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Exact Solution for a Gyromagnetic Sample
and Measurements on a Ferrite*
H. E. BUSSEY? anp L. A. STEINERT#

Summary—An outline of an exact solution for a gyromagnetic
rod centered in a right circular cylindrical cavity resonator is given.
This solution is applied in evaluating dielectric and tensor-magnetic
measurements on a well-known ferrite. Complex frequencies and
constitutive parameters are introduced and the solution is expanded
in series to obtain a convenient calculational scheme. Comparisons
are made of exact and perturbation calculations of results from a
small and a large sample. The effect of insufficient symmetry of the
cavity is discussed and the condition for sufficient symmetry is
given, The g value of electrons was 2.02.

I. INTRODUCTION

METHOD for the measurement of tensor per-
meability, based on an exact mathematical solu-
tion rather than the perturbation solution for a
circular cylindrical resonator with a sample, is given.
Results obtained using the two-dimensional TMmo
modes of a circular cylindrical resonator are shown. In
this case the sample can protrude through holes in the
cavity walls, thus permitting very uniform magnetiza-
tion of the ferrite samples.

An advantage of this exact method is the convenience
of measuring the comparatively large frequency and Q
changes produced by the samples. Samples were used
having diameters of 0.025 and 0.075 inch for measure-
ments at 9200 mc.

It is pertinent to mention that the exact calculations
yield directly the constitutive electrical parameters of
the sample; z.e., the dielectric constant and the permea-
bility. On the other hand, perturbation calculations yield
directly a “demagnetized susceptibility,” (u—uo) F(u),
where F(u) is a demagnetizing factor and u is obtained
with an additional step. The demagnetized suscepti-
bility and the permeability should not be confused.

II. SoLUTION FOR GYROMAGNETIC SAMPLE

An exact solution for a circular cylindrical cavity
resonator containing as a sample a centered rod of gyro-
magnetic material has been given previously.l A brief
outline is included here, along with several details previ-
ously omitted.

The properties of the gyromagnetic material are de-
scribed first. With the rf magnetic field % and the in-
duction & in right circular cylindrical coordinates, the
material is a substance with constitutive parameters
which may be expressed as

* Manuscript received by the PGMTT, July 8, 1957; revised
manuscript received, September 23, 1957. Supported by Order No.
BuShips/1700R-56.
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b, g da 0 I,
by = —ia u O hy }. (1)
bz 0 0 Mz hz

The dielectric constant € is assumed to be a scalar. The
signs of the off-diagonal terms specify that the time de-
pendence is exp (—iwt). The antisymmetric matrix (u)
in (1) is identical with the matrix which represents the
tensor permeability in the usual Cartesian coordinates.
This may be shown by applying rotation operators to
the matrix equation b= (u)k in Cartesian space and ob-
taining (1) as a result. The matrix (u) has an inverse
which is written as

M iK O
Wt=|—iKk M 0 ). (2)
0 0 M,

It is introduced because its elements occur most natu-
rally in the wave solutions to be obtained.

To obtain a solution for the cavity with a gyromag-
netic rod, the wave equation in the sample must be
solved and the waves in it matched to those in the re-
maining space of the cavity.

The wave equation for a gyromagnetic medium is of
the fourth order,? for a general three-dimensional wave,
or of the second order? for two-dimensional waves; 7.e.,
for waves that are independent of one coordinate, here
chosen to be the z coordinate. The advantage of working
with the two-dimensional waves lies in the simplicity of
solution, and they are selected for the remaining work,
with the foreknowledge that there exist two-dimen-
sional modes of oscillation for cavity resonators. The
two-dimensional wave equation that has solutions which
may fit boundary conditions! in a closed resonator is

(Vo & wle/ME. = 0, (3)
where
5 1 4 aJ 1 942

—_ e — U

r Jdr 9r 7t d¢?

is the Laplacian in transverse (7, ¢) space; w is the angu-
lar frequency. Eq. (3) is valid in free space after replac-
ing M by My=1/u, and € by ey, where uo and €, are the
constitutive parameters of free space.

2 P. S. Epstein, “Theory of wave propagation in a gyromagnetic
medium,” Rev. Mod. Phys., vol. 28, pp. 3~17; January, 1956.
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Appl. Phys., vol. 24, pp. 604—608; May, 1953.
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The solutions of (3) are of the form
E: = (dem 4 Be ™) [FJ,(6r) + GYV.(8r)], (4

where B=w(e/M)V2, J, and V, are Bessel functions of
the first and second kinds, respectively, of inetgral order
n, and 4, B, F, and G are coefficients to be determined
by the boundary conditions. The solutions of (3) in free
space are the same as in (4), provided that the cylinder
functions have the argument kr where k=w(eo/ My) 12
[The time factor exp (—iwt) is understood with (4) and
other field quantities below.]

Now we consider the boundary value problem of
fitting the waves (4) into a right circular cylindrical
resonator with a centered gyromagnetic rod (Bussey
and Steinert,! Fig. 1). The rod has radius ¢ and the
cylindrical wall of the cavity is at » =5, b>a. Since the
fields do not vary with z, the height of the assembly is
arbitrary.

It is known that in this problem the e*¢ and ¢~
solutions have, in general, different resonant frequen-
cies, thus either frequency can be selected for excitation.
A choice of signs indicates this selection. The physical or
boundary conditions at r =0 and 7 = are satisfied with
(4) expressed as:

L, = DetinsJ, (Br),
E, = EeteC, (ky),

r < a, (3)
r > a, (6)

where C,(kr) = J,(kr) ~ YV, (kr) [ J.(kb)/ V.(kb) ] is always
zero at r =».

The magnetic fields are obtained from (5) and (6) by
applying Maxwell's curl equation, (u)~! curl E=iwH.
A convenient matrix form for this equation is

M K 0 0 —D, Dy /B,
—iK M 0 D. 0 — D, yon
0 0 M. —vr Dy v 'Dyr 0 E.
hy
= i kg |, (7N
hy

where the D’s are derivative operators.

It remains to make E, and ks continuous across the
boundary at 7 =a. This fixes the ratio of the amplitudes
D/E and the value of w and gives the equation of reso-
nance for the system as:

MBal, (Ba)
Ju(Ba)

where the primes indicate derivatives with respect to the
arguments. Eq. (8) represents two resonances for »>0.
The upper sign (+#nK) is used with the Larmor? rotating
pattern and the lower sign with the anti-Larmor case.
When n=0, we have a nondegenerate T M, mode and

MokaC,/ (ka)

+ nk = Cotka) , (8)

* Larmor refers to the case where the rf magnetic field pattern
rotates in the same sense as the precessing magnetization, and anti-
Larmor refers to the opposite sense of rotation.
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in this mode a small ferrite rod furnishes mostly a di-
electric effect on the resonator. In order to evaluate the
three unknowns, €, M, and K, three measurements on a
ferrite in three different cavity modes are required. It is
convenient to make one measurement in a TMomo
resonator and two in a TMyy resonator (Larmor and
anti-Larmor). A fourth experiment in a TEg; cavity can
furnish M, exactly.

III. Losses aND COMPLEX ARGUMENTS

It is apparent that the above equation of resonance
(8) does not directly indicate what happens when the
frequency of the excitation is not at the resonant fre-
quency. In our experiments, however, excitation away
from resonance was carried out to find the Q which indi-
cates the losses; 7.e., Q was measured by noting the
change in the transmitted power as the frequency de-
parted from resonance. Alternatively, the Q of a resona-
tor may also be measured in the time domain by viewing
the exponential decay of the energy, and this, of course,
is a resonant oscillation with what appears to be a com-
plex {requency,’ w*=w’~7w’’. In this case, the impor-
tant feature is that the frequency does not depart from
resonance and the equation of resonance is satisfied dur-
ing the Q measurement.

We will assume that the Q obtained from the varia-
tion of transmission with frequency (as it actually was
measured) is the same (Q obtained from a transient
measurement; that the resonant frequency was complex
with w¥*=w’—1{w’/2Qr, where Qr is the contributed Q of
the ferrite sample to the resonator, found from 1/Qp
=1/0,—1/0.", where Q, is the resonator Q with the
lossy sample, and Q.’ is the Q with the same sample as-
sumed to be lossless. For the present work we will em-
ploy the additional widely used assumption that, for a
small sample, Q.= Q., the Q of the empty resonator.
(Exact expressions for Q. of the resonator with a lossless
gyromagnetic sample have been developed, but they are
rather cumbersome and were not used in the present
work,)

1V. CALCULATION OF RESULTS

Eq. (8) may be expressed using relative dielectric and
magnetic constants e* =e/ey, M*=poM, and K* =p,K,
where the asterisks also specifically indicate that these
quantities are taken to be complex. In addition, we will
expand the functions on the left side of (8) in series as-
suming that a, the sample radius, is small so that to a
good approximation, for n=1,

M* + K* = Ty(k*a) 4+ (F*a)?/4 + 2(k*a)i/96M*, (9)

5 This may be seen as follows. Consider an electromagnetic field
with the time dependence ¢ i ¥ = 1@/t = o=@/ /ig=i0"t There s ex-
pounential decay for «’’>0. Now consider the general definition of
Q=u'W/(—dW/dt), the stored energy W is divided by the power
dissipation per radian. This may be rearranged into the logarithmic
differential equation dW/W = —w’dt/Q. The solution is W(t) =W(
=0)e="t/Q, The field strength, obtained from the square root of the
energy, then decays as ¢7*’¢2Q. Comparing the two exponential de-
cays, we have a possible physical representation by using the com-
plex o*=w’—iw’/2Q.
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where T is the right-hand side of (8) multiplied by uo.
In (9) we specifically indicate that k* =w*(uee)!/? is
complex. M* is first estimated without the last term on
the right, then is used in the last term to improve the
estimation. A term in (ka)® can easily be carried in the
series.

The benefits of the above expansion especially are ap-
parent during practical calculations, because from (9)
we then obtain simple pairs of algebraic equations in-
stead of the difficult four simultaneous transcendental
equations that would arise if (8) were solved directly.

Assuming (temporarily) that €* is known directly
from a TM o experiment, then it is only necessary to
evaluate the TMyy data using (9) separated into its real
and imaginary parts with M*=M"+iM"’, e*=¢ 1€,
etc., for exp (—iwt) time dependence,

M + K = T + a®[¢(o? — w''?) + 2¢"w' e’ |+ /4c? (10)
M 4+ K" = Ty + [’ (o'? — o''?) — 2do/e’ |1 /4c2, (11)

where now we have exhibited only the first term of the
expansion; ¢ is the velocity of light. The + sign choice
indicates, as before, that Larmor and anti-Larmor fre-
quencies enter separately and that each equation repre-
sents two equations. T separates into real and imaginary
parts as indicated because of the complex frequency in
k. The assumption that €* was known was introduced
here for a convenient discussion. In practice, one may
iterate the above calculations and use the first estimates
of ¢, M, and K to obtain improved self-consistent re-
sults. After calculating the values from (10) and (11),
we find p* and o* [the relative constants of the tensor

(1)] from

M* + a* — (M* + K*)—d‘ (12)

V. EQUIPMENT

A photograph (Fig. 1) shows the microwave source, a
Pound stabilized unit, and the magnet. Galvanometers
were used as power indicators. An accurate wavemeter
was used to measure frequency changes, including Q
widths. It has an accurate micrometer movement which
seems to repeat its settings to 107 inches. A table of
frequencies for each 10~*inch change in setting was
constructed (using an automatic computer) which made
the wave meter convenient to use. Its Qr, (loaded Q) was
16,000 and its transmission was — 11 db. Invar was used
to give some temperature compensation, although tem-
perature effects are not a major problem when, as here,
frequency differences are the main interest.

VI. DIELECTRIC M EASUREMENT

Measurements were made of the dielectric and mag-
netic constants of the ferrite R-1 of General Ceramics.
The samples were ground with a diamond wheel from
pressed bars (1955 manufacture, dimensions 0.4X0.9
X6 inches) that were cut up.

The TM g2 resonator for dielectric measurements had
an empty frequency f, of 9860 mc and a Qr of 8000. The
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Fig. 1-—The experimental assembly.

R-1 sample was 0.075 inch in diameter and 2 inches
long. The sample shifted the frequency to 9090 mc
which leads to an €’ of about 17 by perturbation theory
and 11.4 when evaluated by formula (8) with #=0 and
w =0.76, the unmagnetized value. The value obtained
for ¢’’ was 0.013. In this present work, it is assumed that
¢ is independent of the applied dc magnetic field. This,
of course, needs to be checked and with the advent of
exact calculations a check may be feasible. A con-
venient expansion of (8) for n=0 is €&*(k*a)?=2T
/(1 —e*(k*a)?/8M*). For unmagnetized material M*—!
is replaced by up*.

Since the perturbation method® using a rectangular
waveguide cavity is widely used for dielectric measure-
ments of ferrites, we will indicate the results from this
method. With 0.080-inch holes in each face for inserting
the sample, the value of ¢’ is about 12.5. If the holes are
eliminated and the sample enclosed, a value near 13.5 is
obtained. The holes weaken the electric field, thus
compensating some of the error of perturbation theory.?

VII. MAGNETIC MEASUREMENT

In this section, tensor permeability measurements on
a small (0.025-inch diameter) and a large (0.075-inch
diameter) sample rod are compared. In addition, per-
turbation and exact theory methods of calculating the
results are compared. Two different resonators were
used for the two sizes of rods. Both resonators had four
irises as shown in Fig. 2, but differed in that, for the
large sample, excitation of the resonator was through
only one iris, whereas the resonator shown in Fig. 2 and
used for the small sample was excited through two adja-
cent irises by waves of equal magnitude (within 2 per

$ G. Birnbaum and J. Franeau, “Measurements of dielectric con-
stant and loss of solids and liquids by a cavity perturbation method,”
J. Appl. Phys., vol. 20, pp. 817-818; August, 1949.

7 An investigation of these matters has been completed and a re-
port will be written. Corrections for the perturbation approximation
and hole error were developed.
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Fig. 2—Cross section of TMuy resonator with 1 irises and guides
permitting excitation of a rotating field pattern.

cent) and 90° out of phase. This allowed either Larmor
or anti-Larmor excitation to be impressed, as was nec-
essary because with a small sample the two modes
“overlapped.” With the 0.075-inch sample, the two
modes were separated sufficiently so that results were
obtained with a single input iris. The four irises in this
case were used to maintain symmetry.

Both cavities had a length (along the 2 axis) of 0.9
inch. The small sample was 1.25 inch long and the large
sample was 2.0 inch long. This allowed the sample ends
to protrude outside the resonator, thus the dc mag-
netization of the measured part was essentially uni-
form,® except near zero dc field.

The results for the small rod are shown in Fig. 3 and
Fig. 4 as evaluated both by the exact solution and by
perturbation theory. The results for the large rod are
shown in Fig. 5 and Fig. 6. The curves in Fig. 3 and the
Larmor curve in Fig. 4 very closely fitted the experi-
mental points, which were omitted for clarity. The anti-
Larmor loss data were rather erratic and these points are
shown in Fig. 4. [Note added in proof: The anti-Larmor
loss curve (Fig. 4) is incorrect. The curve probably
starts at about 0.0015 unmagnetized and comes down
to 0.0002 at 1000 oersteds, remaining at about this value
to 8000 oersteds.]

The indications of the rotating-coil Gauss meter were
found to be 2.2 per cent too high and, therefore, the
abscissa Hy, needs to be lowered everywhere by 2.2 per
cent.

Comparing the “exactly” calculated small and large
rod data, it is seen that the excursions of the curve at
resonance are all slightly greater for the large sample.

8 R. C. LeCraw and E. G. Spencer, “Tensor permeabilities of fer-
rites below magnetic saturation,” 1956 IRE CONVENTION RECORD,
pt. 5, pp. 66-74.
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The perturbation approximation introduces relatively
little error for the small rod, but considerable error for
the large rod. It also artificially displaces the resonance.

From the frequencies of gyromagnetic resonance,
9216 mc and 9114 mc, for the small and large rods, re-
spectively, and with Hj. corrected as above, it was
[ound that the g factor of the electrons was 2.013 for
the small rod and 2.023 for the large rod, found from
[=geHy./4m mc.

The above measurements may be compared with
published? perturbation results on the same ferrite. The
results for the real parts, pu’ +a', differ in detail, es-
pecially at low values of Hy.. The peak absorptions agree
to within the inconsistency of the small and large rod
data. The g factor obtained from the perturbation rod
data® would be approximately 1.9; our perturbation re-
sults also tend to give g's that are too low.

The missing data in Fig. 3-Fig. 6 were missed due to
a resonant absorption and resulting weak signal. It will
be observed that the loss {actor, u’/+a’’ is not particu-
larly great in the missed region. There are, however,
geometrical effects that create a resonant absorption
there. These effects may be seen by examining the be-
havior of the perturbation quantity, (u—puo) F(u), (see
Introduction) where F(u) allows for demagnetization,
or alternatively, by examining Kittel's resonance for-
mula!® that allows for demagnetization. It may be
shown that these two viewpoints are in agreement.

VIII. SYMMETRY OF THE RESONATOR

Symmetry in the mechanical structure of the resona-
tor is important in tensor permeability measurements.
The mathematical solution in Section II assumed that
the resonator was periectly circular. To avoid gross
errors, due to initial splitting of the degeneracy by
geometrical perturbations, it is sufficient that the sym-
metry group of the perturbed TM;j;y resonator be C; or
higher. This means that with irises, loops, or probes
around the periphery of the cylinder, there must be three
or more identical irises, etc., spaced at equal angles. A
circular iris on the axis would be desirable, as it leaves
the symmetry C,, but is not always practicable.

The deleterious effect of insufficient symmetry was
observed with a 9200-mc T M, resonator in which the
sine and cosine modes were already split by 5 mc with
no sample inserted. Results for the small rod were in
general wrong, except that the unmagnetized scalar
value was correct and the gyromagnetic resonance was
fairly well indicated. However, all of the results for the
large rod were very nearly correct.

The resonator with four irises shown in Fig. 2 was
annealed and carefully machined and, when empty, the
independent sine and cosine modes differed in frequency
by only a few hundredths of a megacycle. Furthermore,

9 E. G. Spencer, L. A. Ault, and R. C. LeCraw, “Intrinsic tensor
permeabilities on ferrite rods, spheres, and disks,” Proc. IRE, vol.
44, pp. 1311-1317; October, 1956.

1o C. Kittel, “On the theory of ferromagnetic resonance absorp-
tion,” Phys. Rev., vol. 73, pp. 155-161; January 15, 1948.
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the loaded Q values (about 8000) differed by less than
three per cent.
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