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Exact Solution for a Gyromagnetic Sample

and Measurements on a Ferrite*
H. E. BUSSEY~ AND L. A. STEINERT~

Summarg—An outline of an exact solution for a gyromagnetic
rod centered in a right circular cylindrical cavity resonator is given.
This solution is applied in evaluating dielectric and tensor-magnetic
measurements on a well-known ferrite. Complex frequencies and

constitutive parameters are introduced and the solution is expanded
in series to obtain a convenient calculational scheme. Comparisons

are made of exact and perturbation calculations of results from a

small and a large sample. The effect of insutEcient symmetry of tke

cavity is discussed and the condition for sufficient symmetry is

given. The g value of electrons was 2.02.

I. INTRODUCTION

A

METHOD for the measurement of tensor per-

meability, based on an exact mathematical solu-

tion rather than the perturbation solution for a

circular cylindrical resonator with a sample, is given.

Results obtained using the two-dimensional T.M.~o

modes of a circular cylindrical resonator are shown, In

this case the sample can protrude through holes in the

cavity walls, thus permitting very uniform magnetiza-

tion of the ferrite samples.

An advantage of this exact method is the convenience

of measuring the comparatively large frequency and Q

changes produced by the samples. Samples were used

having diameters of 0.025 and 0.075 inch for measure-

ments at 9200 mc.

It is pertinent to mention that the exact calculations

yield directly the constitutive electrical parameters of

the sample; i.e., the dielectric constant and the permea-

bility. On the other hand, perturbation calculations yield

directly a “demagnetized susceptibility, ” (p –po) F(p),

where F(p) is a demagnetizing factor and p is obtained

with an additional step. The demagnetized suscepti-

bility and the permeability should not be confused.

II, SOLUTION FOR GYROMAGNETIC SAMPI.E

An exact solution for a circular cylindrical cavity

resonator containing as a sample a centered rod of gyro-

magnetic material has been given previously. 1 A brief

outline is included here, along with several details previ-

ously omitted.

The properties of the gyromagnetic material are de-

scribed first. With the rf magnetic field h and the in-

duction b in right circular cylindrical coordinates, the

material is a substance with constitutive parameters

which may be expressed as

* Manuscript received by the PGMTT, July 8, 1957; revised
manuscript received, September 23, 1957. Supported by Order No.
f3uShim/1700R-.564.

f National Bureau of Standards, Boulder Labs:, Boulder, Colo.
1 H. E. Bussey and L. A. Steinert, “Exact solutlon for a cylindri-

cal cavity containing a .gyromagnetic material, ” PROC. IRE, vol. 45,
PP. 693-694; May, 19.57.
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The dielectric constant ~ is assumed to be a scalar. The

signs of the off-diagonal terms specify that the time de-

pendence is exp ( –icd). The antisymmetric matrix (P)

in (1) is identical with the matrix which represents the

tensor permeability in the usual Cartesian coordinates.

This may be shown by applying rotation operators to

the matrix equation b = (p)h in Cartesian space and ob-

taining (1) as a result. The matrix (p) has an inverse

which is written as

“)-’= (-; ; ;) ‘2)

It is introduced because its elements occur most natu-

rally in the wave solutions to be obtained.

To obtain a solution for the cavity with a gyromag-

netic rod, the wave equation in the sample must be

solved and the waves in it matched to those in the re-

maining space of the cavity.

The wave equation for a gyromagnetic medium is of

the fourth order, 2 for a general three-dimensional wave,

or of the second order3 for two-dimensional waves; i.e.,

for waves that are independent of one coordinate, here

chosen to be the z coordinate. The advantage of working

with the two-dimensional waves lies in the simplicity of

solution, and they are selected for the remaining work,

with the foreknowledge that there exist two-dimen-

sional modes of oscillation for cavity resonators. The

two-dimensional wave equation that has solutions which

may fit boundary conditional in a closed resonator is

(v; + w%/M)Rs = 0, (3)

where

V:=; :r:+Lz p &&

is the Laplacian in transverse (r, ~) space; w is the angu-

lar frequency. Eq. (3) is valid in free space after replac-

ing J“ by MO= l/po and e by eo, where PO and EOare the

constitutive parameters of free space.

j P. S. Epstein, “Theory of wave propagation in a gyromagnetic
medium, ” Rev. Mod. Plzys., vol. 28, pp. 3–17; January, 1956.

3 M. L. Kales, “Modes in wal,eguide. containing ferrites, ” ~
Appl. Pltys., vol. 24, pp. 604–608; ilfay, 1953.
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The solutions of (3) are of the forlm

E, = (ile’”@ + Be-in+) [IV.(,fir) + G Y.(@r)], (4)

where ~ =ti(e/-M) 112, J. and l’. are Bessel functions of

the first and second kinds, respectively, of inetgral order

n, and A, B, F, and G are coefficients to be determined

by the boundary conditions. The solutions of (3) in free

space are the same as in (4), provided that the cylinder

functions have the argument kr where k =u(eO/M’O) 1/2.

[The time factor exp ( –id) is understood with (4) and

other field quantities below.]

Iiow we consider the boundary value problem of

fitting the waves (4) into a right circular cylindrical

resonator with a centered gyromagnetic rod (Bussey

and Steinert, i Fig. 1). The rod has radius a and the

cylindrical wall of the cavity is at r = b, b > a. Since the

fields do not vary with z, the height of the assembly is

arbitrary.

It is known that in this problem the e~’n~ and e–~fi~

solutions have, in general, different resonant frequen-

cies, thus either frequency can be selected for excitation,

A choice of signs indicates this selection. The physical or

boundary conditions at r = O and r = b are satisfied with

(4) expressed as:

E, = De+ ‘n~J.(&), Y<a, (5)

E, = Ee* ~@C,,(ky), r>a, (6)

where Cn(kr) = Jn(kr) — Yn(kr) [.ln(kb)/ Yn(kb) ] is always

zero at T = b.

The magnetic fields are obtained from (5) and (6) by

applying Maxwell’s curl equation, (p)–l curl E = icoH.

A convenient matrix form for this equation is

h,o=iwlz~, (7)

h,

where the D’s are derivative operators.

It remains to make E, and h+ continuous across the

boundary at r = a. This fixes the ratio of the amplitudes

D/E and the value of co and gives the equation of reso-

nance for the system as:

Mf3aJ.’(~a) MOkaCn’(ka)
+ }2K = ——

J.(fia) Cn(ka) ‘
(8)

where the primes indicate derivatives with respect to the

arguments. Eq. (8) represents two I-esollances for n >0.

The upper sign (+nK) is used with the LarmorA rotating

pattern and t-he lower sign with the anti-Larmor case.

When rr = O, we h:ive a nondegcnerate Th’( 0,,,0 mode an(i

4 Lar]nor refers to the case where the rf tna~l]ctic field patteru
rotates in the same sense as the processing magnetization, and ~nti -
Larmor refers to the opposite sense of rotation.

in this mode a small ferrite rod furnishes mostly a di-

electric effect on the resonator. In order to evaluate the

three unknowns, e, ill, and K, three measurements on a

ferrite in three different cavity modes are required. It is

convenient to make one measurement in a TMo~O

resonator and two in a TM11O resonator (Larmor and

anti-Larmor). A fourth experiment in a TEO1l cavity can

furnish ~fz exactly.

111, LOSSES AND COMPLEX ARGUMENTS

It is apparent that the above equation of resoaance

(8) does not directly indicate what happens when the

frequency of the excitation is not at the resonant fre-

quency. In our experiments, however, excitation away

from resonance was carried out to find the Q which indi-

cates the losses; i.e., Q was measured by noting the

change in the transmitted power as the frequency de-

parted from resonance. Alternatively, the Q of a resona-

tor may also be measured in the time domain by viewing

the exponential decay of the energy, and this, of course,

is a resonant oscillation with what appears to be a com-

plex frequency,b U* =u’ —--iu”. In this case, the impor-

tant feature is that the frequency does not depart from

resonance and the equation of resonance is satisfied dur-

ing the Q measurement.

We will assume that the Q obtained from the varia-

tion of transmission with frequency (as it actually was

measured) is the same Q obtained from a transient

measurement; that the resonant frequency was complex

with W* =w’ —iu’/2Q~, where QF is the contributed Q of

the ferrite sample to the resonator, found from l/QF

= I/Q, – I/Q,’, where Q,, is the resonator Q with t’he

10SSY sample, and Q.’ is the Q with the same sample as-

sumed to be Iossless. For the present work we will em-

ploy the additional widely used assumption that, for a

small sample, Q.’ + Q., the Q of the empty resonator.

(Exact expressions for Q.’ of the resonator with a lossless

gyromagnetic sample have been developed, but they are

rather cumbersome and were not used in the present

work,)

IV. CALCULATION OF RESULTS

Eq. (8) may be expressed using relative dielectric and
* =ejCfl, ~1* =pfid~, and K* ‘POK~magnetic constants c

where the asterisks also specifically indicate that these

quantities are taken to be complex. In addition, we will

expand the functions on the left side of (8) in series as-

suming that a, the sample radius, is small so that to a

good approximation, for n =1,

M* f K* = Ti(k*a) + c*(k*a)’/4 + e*2(k*a)4/96M*, (9)

s This may be seen as follows. Consider an electronxigaetic field
\vith the tilne dependence e )

—~LU*C= ~—,~ut—,~,f c= ~—~,,te—iu,t.Therrisex-

ponential decay for co” >0. Now consider the general definition of

Q = OJ’~~/( –d ~~’/d~), the s@red energy W is divided by the power
dissipatlo]] per radiau. This may be rearranged iato the logarithmic
differential equation dW/W= – o’dt/Q. The solution is W(t)= W(t
= O)e-u ‘L/~. The field strength, obtained from the square root of the

-C ,t/2Q cO1nParillg the two exponential de-eaergy, then decays as e .
cays, we have a possible physical representation by using the com-
plex U*= co’- iu’/2Q.
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where T is the right-hand side of (8) multiplied by ,UO.

In (9) we specifically indicate that k* =u*(poeo)l/2 is

complex. M* is first estimated without the last term on

the right, then is used in the last term to improve the

estimation. A term in (ka)e can easily be carried in the

series.

The benefits of the above expansion especially are ap-

parent during practical calculations, because from (9)

we then obtain simple pairs of algebraic equations in-

stead of the difficult four simultaneous transcendental

equations that would arise if (8) were solved directly.

Assuming (temporarily) that # is known directly

from a TMo~o experiment, then it is only necessary to

evaluate the TM11O data using (9) separated into its real

and imaginary parts with M*= M’+; if”, E* =e’+ie”,

etc., for exp ( —id) time dependence,

M’ 3 K’ = T*’ + a’[e’(co’z – co’”) + 2C’’@’CO’’]lG2G2 (10)

~“ + K“ = T*” + ~z[e’’(u’z – ~“z) – 24w’(.J’]~/4c2, (11)—

where now we have exhibited only the first term of the

expansion; c is the velocity of light. The A sign choice

indicates, as before, that Larmor and anti-Larmor fre-

quencies enter separately and that each equation repre-

sents two equations. T separates into real and imaginary

parts as indicated because of the complex frequency in

k. The assumption that e* was known was introduced

here for a convenient discussion. In practice, one may

iterate the above calculations and use the first estimates

of e, M, and K to obtain improved self-consistent re-

sults. After calculating the values from (10) and (1 1),

we find P* and a* [the relative constants of the tensor

(l)] from

,u* t a’ = (M* + K*)-’, (12)

V. EQUIPMENT

A photograph (Fig. 1) shows the microwave source, a

Pound stabilized unit, and the magnet. Galvanometers

were used as power indicators. An accurate wavemeter

was used to measure frequency changes, including Q

widths. It has an accurate micrometer movement which

seems to repeat its settings to 10–5 inches. A table of

frequencies for each 10–4-inch change in setting was

constructed (using an automatic computer) which made

the wave meter convenient to use. Its Q~ (loaded Q) was

16,000 and its transmission was — 11 db. Invar was used

to give some temperature compensation, although tem-

perature effects are not a major problem when, as here,

frequency differences are the main interest.

VI. DIELECTRIC MEASUREMENT

Measurements were made of the dielectric and mag-

netic constants of the ferrite R-1 of General Ceramics.

The samples were ground with a diamond wheel from

pressed bars (1955 manufacture, dimensions 0,4 xO.9

X6 inches) that were cut up.

The TM Ozoresonator for dielectric measurements had

an empty frequency f. of 9860 mc and a QL of 8000. The

Fig. l—The experimental assembly.

R-1 sample was 0.075 inch in diameter and 2 inches

long. The sample shifted the frequency to 9090 mc

which leads to an e’ of about 17 by perturbation theory

and 11.4 when evaluated by formula (8) with n = O and

p’= 0.7’6, the unmagnetized value. The value obtained

for e“ was 0.013. In this present work, it is assumed that

e is independent of the applied dc magnetic field. This,

of course, needs to be checked and with the advent of

exact calculations a check may be feasible. A con-

venient expansion of (8) for n = O is e*(k*a) 2= 2 T
/(1 –e”(.k”a) 2/8M*). For unmagnetized material 11”-~

is replaced by P*.

Since the perturbation methodb using a rectangular

waveguide cavity is widely used for dielectric measure-

ments of ferrites, we will indicate the results from this

method. With 0.080-inch holes in each face for inserting

the sample, the value of 6’ is about 12.5. If the holes are

eliminated and the sample enclosed, a value near 13.5 is

obtained. The holes weaken the electric field, thus

compensating some of the error of perturbation theory. T

VII. MAGNETIC MEASUREMENT

In this section, tensor permeability measurements on

a small (0.025-inch diameter) and a large (0,075-inch

diameter) sample rod are compared. In addition, per-

turbation and exact theory methods of calculating the

results are compared. Two different resonators were

used for the two sizes of rods. Both resonators had four

irises as shown in Fig. 2, but differed in that, for the

large sample, excitation of the resonator was through

only one iris, whereas the resonator shown in Fig. 2 and

used for the small sample was excited through two adj a-

scent irises by waves of equal magnitude (within 2 per

G G. Birnbaum and J. Franeau, “Measurements of dielectric con-
stant and loss of solids and liquids by a cavity perturbation method, ”
J. A@@l. Phys.: VOI. 20, Pp. 81 7-818; August, 1949.

? An investigation of these matters has been completed and a re-
port will be written. Corrections for the perturbation approximation
and hole error were developed.
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!

Fig. 2—Cross s~ction of TMUO resonato! with -1 irises and guides
permitting excitatum of a rotating field pattern.

cent) and 90° out of phase. “rhis allowed either Larmor

or anti- Larmor excitation to be impressed, as was nec-

essary because with a small sample the two modes

“overlapped. ” With the 0.075-inch sample, the two

modes were separated sufficiently so that results were

obtained with a single input iris. The four irises in this

case were used to maintain symmetry.

Both cavities had a length (along the z axis) of 0.9

inch. The small sample was 1.25 inch long- and the large

sample was 2.0 inch long-. This allowed the sample ends

to protrude outside the resonator, thus the dc mag-

netization of the measured part was essentially uni-

form,’ except near zero dc field.

The results for the small rod are shown in Fig. 3 and

Fig. 4 as evaluated both by the exact solution and by

perturbation theory. The results for the large rod are

shown in Fig. 5 and Fig. 6. The curves in Fig. 3 and the

Larmor curve in Fig. 4 very closely fitted the experi-

mental points, which were omitted for clarity. The anti-

Larmor loss data were rather erratic and these points are

shown in Fig. 4. [.4rote added in proof: The anti-Larmor

loss curve (Fig. 4) is incorrect. The curve probably

starts at about 0.0015 unmagnetized and comes down

to 0.0002 at 1000 oersteds, remaining at about this value

to 8000 oersteds.]

The indications of the rotating-coil Gauss meter were

found to be 2.2 per cent too high and, therefore, the

abscissa Ha. needs to be lowered everywhere by 2.2 per

cent.

Comparing the ‘{exactly” calculated small and large

rod data, it is seen that the excursions of the curve at

resonance are all slightly greater for the large sample.

BR. C. LeCraw and E. G. Spencer, “Tensor permeabilities of fer-
rites below magnetic saturation, ” 1956 IRE CONVE~TIO~ RECORD,
pt. 5, pp. 66-74.

The perturbation approximation introduces relatively

little error for the small rod, but considerable error for

the large rod. It also artificially displaces the resonance.

From the frequencies of gyromagnetic resonance,

9216 mc and 9114 mc, for the small and large rods, re-

spectively, and with ~a. corrected as above, it was

found that the g factor of the electrons was 2.013 for

t-he small rod ai]d 2.023 for the large rod, found from

~= geH~c/4rr ITIC.

The above measurements may be compared with

published perturbation results on the same ferrite. The

results for the real parts, p’ 3 a’, differ in detail, es-

pecially at low values of H~~. The peak absorption agree

to within the inconsistency of the small and large rod

data. The g factor obtained from the perturbation rod

datag would be approximate el y 1.9; our perturbation re-

sults also tend to give g’s that are too low.

The missing data ill Fig. 3–Fig. 6 were missed due to

a resonant absorption and resulting weak signal. It wi 11

be observed that the loss factor, p“ +a” is not particu-

larly great in the missed region. There are, however,

geometrical effects that create a resonant absorption

there. These effects may be seen by examining the b(:-

havior of the perturbation quantity, (p –pO)F(p), (see

Introduction) where F(p) allows for demagnetization,

or alternatively, by examining Kittel’s resonance for-

mulalo that allows for demagnetization. It may be

shown that these two viewpoints are in agreement.

VII I. SYMMETRY OF THE RESONATOR

Symmetry in the mechanical structure of the resona-

tor is important in tensor permeability y measurements.

The mathematical solution in Section II assumed that

the resonator was perfectly circular. To avoid gross

errors, due to initial splitting of the degeneracy by

geometrical perturbations, it is sufficient that the symm-

etry group of the perturbed TMm resonator be Cs or

higher. This means that with irises, loops, or probes

around the periphery of the cylinder, there must be three

or more identical irises, etc., spaced at equal angles. .~

circular iris on the axis would be desirable, as it leaves

the symmetry Cm, but is not always practicable.

The deleterious effect of insufficient symmetry was

observed with a 9200-mc TMu ~ resonator in which the
sine and cosine modes were already split by 5 mc with

no sample inserted. Results for the small rod were in

general wrong, except that the unmagnetized scalar

value was correct and the gyromagnetic resonance was

fairly well indicated. However, all of the results for the

large rod were very nearly correct.

The resonator with four irises shown in Fig. 2 was

annealed and carefully machined and, when empty, the

independent sine and cosine modes differed in frequency

by only a few hundredths of a megacycle. Furthermore,

g E. G. Spencer, L. A. Ault, and R. C. LeCraw, “intrinsic tensor
permeabilities on ferrite rods, spheres, and disks,” PROC. IRE, vol.
44, pp. 1311-1317; October, 1956.

10C, Kittel, “On the theory of ferromagnetic resonance absorp-
tion, ” Phys. Rev., vol. 73, pp. 155-161; January 15, 1948.
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the loaded Q values (about 8000) differed by less than

three per cent.
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